Colouring Nou-Even
Digraphis Digraphis

Raphael Steiner

- jount work with Mavecelo Garlet Millani and Seboastian Wiederecht

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper coloring
$c(x) \neq c(y)$ for all $x y \in E(G)$

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing

$$
c(x) \neq c(y) \stackrel{\Leftrightarrow}{\text { for all }} x y \in E(G)
$$

Conjecture
Every planar graph is 4 -colourable.

Graph Colouring
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing
$c(x) \neq c(y) \stackrel{\text { for all } x y \in E(G)}{ }$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colouring
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper coloring
$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colouring
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper coloring
$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colouring
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper coloring

$$
\Leftrightarrow
$$

$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper coloring

$$
\Leftrightarrow
$$

$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing

$$
\Leftrightarrow
$$

$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing

$$
\Leftrightarrow
$$

$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing

$$
\Leftrightarrow
$$

$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
took almost 250 years first computer assisted proof

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing

$$
\Leftrightarrow
$$

$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
Theorem (Kuradowski, Wagner)
G planar \Leftrightarrow no

took almost 250 years first computer assisted proof

Graph Colouring
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper colowing
\Leftrightarrow
$c(x) \neq c(y)$ for all $x y \in E(G)$
Theorem
Every planar graph is 4-colourable.
Theorem (Kuradowski, Wagner)
G planar \Leftrightarrow no
generalise!

Hadwiger's Conjecture

$$
x(G) \geqslant n \Rightarrow K_{n}-\text { minor }
$$

took almost 250 years first computer assisted proof

minor

Graph Colowing
G graph, $c: V(G) \rightarrow\{1, \ldots, k\}$ proper coloring
$c(x) \neq c(y)$ for all $x y \in E(G)$

Theorem (Kwradowski, Wagner) G planar $\Leftrightarrow n 0$ generalise!

Hadwiger's Conjecture $x(G) \geqslant n \Rightarrow K_{n}$-minor
took almost 250 years first computer assisted proof

minor
"One of the deepest problems in Combinatorics." - P. Endós

The Dichromatic Number
Introduced by Neumann-Lara in 1982
Goal: Generalise proper colourings for undirected graphs to digraphs in a meaningful way

The Dichromatic Number
Introduced by Neumann-Lara in 1982
Goal: Generalise proper colourings for undirected graphs to digraphs in a meaningful way

undirected: adjacent vertices must hove different colours $\chi(G)$

The Dichromatic Number Introduced by Neumann-Lara in 1982
Goal: Generalise proper colowings for undirected graphs to digraphs in a meaningful way

undirected: adjacent vertices must have different colours

directed: no monochromatic directed cycles

$$
\vec{X}(D)
$$

A Conjecture

Two Colour Conjecture (Edo's, Neumann-Lara, Skrekouski) Every orientation (1) of a planar graph is
2-colourable.

A Conjecture

Two Colour Conjecture (Erdós, Neumann-Lara, Skrekonski) Every orientation (1) of a planar graph is 2-colourable.
replace every edge $x y$ by (x, y) or (y, x), but never both

A Conjecture

Two Colour Conjecture (Edo's, Neumann-Lara, Skrekouski) Every orientation (1) of a planar graph is 2-colourable.
replace every edge $x y$ by (x, y) or (y, x), but never both

We will tall about bicolowings today.

A Negative Result (2) digroph
 $\tau_{\text {crele mapegaph of } 0}$

A Negative Result
similarities between digraph colowings and hypergraph colourings

$$
x\left(\varepsilon_{D}\right)=\vec{x}(D)
$$

(1) digraph

$$
e_{D}:=\left(V(D),\left\{v(c) \mid c \subseteq D_{c y c 6} d_{i r}\right\}\right)
$$

T cycle hypergraph of D

A Negative Result
similarities between digraph colorings and hypergraph colourings
(-) digraph

$$
x\left(\varepsilon_{D}\right)=\vec{x}(D)
$$

$$
e_{D}:=(V(D),\{v(c) \mid c \leq D \text { dir. }\})
$$

T cycle hypergraph of D
hypergraph 2-colowing is hard
(maybe?
testing whether $\vec{x}(D) \leqslant 2$ is a special case

A Negative Result
similarities between digraph colorings and hypergraph colourings
(-) digraph

$$
x\left(\varepsilon_{D}\right)=\vec{x}(D)
$$

$$
e_{D}:=(V(D),\{v(c) \mid c \leq D \text { dir. }\})
$$

T cycle hypergraph of D
hypergraph 2-colowing is hard
(maybe?
testing whether $\vec{x}(D) \leqslant 2$ is a special case NP-complete (Feder, Hell, Mohor 2003)

A Negative Result
similarities between digraph colowings and hypergraph colourings

$$
x\left(\varepsilon_{D}\right)=\vec{x}(D)
$$

(1) digraph

$$
e_{D}:=\left(V(D),\left\{v(c) \mid c \leq D_{c y c 6} d_{i r .}\right\}\right)
$$

T cycle hypergraph of D
hypergraph 2-colowing is hard
(maybe?
testing whether $\vec{x}(D) \leqslant 2$ is a special case NP-complete (Feder, Hell, Mohor 2003)
can we do anything?
FRT?

A Negative Result
(-) digraph
similarities between digraph colowings and hypergraph colourings

$$
x\left(\varepsilon_{D}^{\prime}\right)=\vec{x}(D)
$$

$$
e_{D}:=\left(V(0),\left\{v(c) \mid c \subseteq D_{c y c 6} d_{i r}\right\}\right)
$$ T cycle hypergraph of D

hypergraph 2-colowing is hard
(maybe?
testing whether $\vec{x}(D) \leqslant 2$ is a special case NP-complete (Feder, Hell, Mohor 2003) can we do anything?
even if $\tau(D) \leqslant 6$
AND FRT?

A Negative Result
(1) digraph
similarities between digraph colowings and hypergraph colourings

$$
x\left(\varepsilon_{D}^{\prime}\right)=\vec{x}(D)
$$

$$
e_{D}:=\left(V(D),\left\{v(c) \mid c \subseteq D_{c y c 6} d_{i r}\right\}\right)
$$

T cycle hypergraph of D
hypergraph 2-colowing is hard
(maybe?
testing whether $\vec{x}(D) \leqslant 2$ is a special case NP-complete (Feder, Hell, Mohor 2003)
directed feedback vertex number can we do anything?

$$
\begin{aligned}
& \text { even if } \frac{\downarrow}{\tau}(D) \leqslant 6 \\
& \text { AND } \\
& d^{\text {out }}(D) \leqslant 3
\end{aligned}
$$

个 out-degeneracy of D

A Negative Result
(-) digraph
similarities between digraph colorings and hypergraph colourings

$$
x\left(e_{D}\right)=\vec{x}(D)
$$

$$
e_{D}:=\left(V(D),\left\{v(c) \mid c \leq D \operatorname{dir}_{c y c \varepsilon}\right\}\right)
$$

T cycle hypergraph of D
hypergraph 2-colowing is hard
(maybe?
testing whether $\vec{x}(D) \leqslant 2$ is a special case NP-complete (Feder, Hell, Mohor 2003) directed feedback vertex number can we do anything?
even if $\frac{\downarrow}{\tau}(D) \leqslant 6$
$d^{\text {out }}(D) \leq 3 \quad \Rightarrow$ hard even on digraphs of bounded个 out-degeneracy of D clicected treemidth

Bicolocring ... Things
Graphs
no odd cycles (bipartite)

Bicolouring ... Things
Graphs
no odd cycles (bipartite)

$$
\begin{gathered}
\Leftrightarrow \\
\chi(G) \leq 2 \\
G \\
v\left(G^{\prime}\right)=\tau\left(G^{\prime}\right) \\
\text { f.a. } G^{\prime} \leq G
\end{gathered}
$$

Bicolouring ... Things
Graphs
no odd cycles (bipartite)

$$
\Leftrightarrow
$$

$$
x(G) \leq 2
$$

vertex cover

$$
\begin{aligned}
& G \Rightarrow \\
& \nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right)^{\prime} \\
& \text { fa. } G^{\prime} \leq G
\end{aligned}
$$

matching number

Bicolouring ... Things

Graphs
no odd cycles (bipartite) no odd strong cycles (balanced) \Leftrightarrow

$$
x(G) \leq 2
$$

Hypegraphs

$$
\Leftrightarrow \quad \text { vertex cover }
$$

$\nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right)$
fa. $G^{\prime} \leq G$

Bicolouring ... Things

Graphs
no odd cycles (bipartite)

$$
\begin{gathered}
\Leftrightarrow \\
\chi(G) \leq 2 \\
\Leftrightarrow \\
\nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right) \\
\text { fa. } G^{\prime} \leq G
\end{gathered}
$$

Hypergraphs
no odd strong cycles (balanced)

$$
\Leftrightarrow
$$

$$
X\left(H^{\prime}\right) \leq 2 \text { fa. } H^{\prime} \leq H
$$

$\Leftrightarrow \quad$ vertex cover
$\lambda \nu\left(H^{\prime}\right)=\tau\left(H^{\prime}\right) \ll$
fa. $H^{\prime} \leq H$
matching number

Bicolouring ... Things

Graphs
no odd cycles (bipartite)

$$
\begin{gathered}
\Leftrightarrow \\
\chi(G) \leq 2 \\
\Leftrightarrow \\
\nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right) \\
\text { f.a. } G^{\prime} \leq G
\end{gathered}
$$

Hypegraphs
no odl strong cyeles (balanced)

$$
\Leftrightarrow
$$

$X\left(H^{\prime}\right) \leq 2$ f.a. $H^{\prime} \leq H \leftarrow$

$$
\Leftrightarrow
$$

$\nu\left(H^{\prime}\right)=\tau\left(H^{\prime}\right)$
f.a. $H^{\prime} \leq H$
delete and "shrink" edojes

Bicolouring ... Things

Graphs
no odd cycles (bipartite)

$$
\begin{gathered}
\Leftrightarrow \\
\chi(G) \leq 2 \\
\Leftrightarrow \\
\nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right) \\
\text { fa. } G^{\prime} \leq G
\end{gathered}
$$

Hypegraphs
no odd strong cycles (balanced)

$$
\Leftrightarrow
$$

$$
X\left(H^{\prime}\right) \leq 2 \text { fa. } H^{\prime} \leq H \leftarrow
$$

$$
\Leftrightarrow
$$

$$
\nu\left(H^{\prime}\right)=\tau\left(H^{\prime}\right)
$$

fa. $H^{\prime} \subseteq H$
delete and "shrink" edges

What About Digraphs?
Can we have a similar picture?
Ingredients:

- a notion of "substructure"
- odd cycles
- matching vs. vertex cover
- colours

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure"
- odd cycles
- matching vs. vertex cover
- colours

Theorem (Guenin \& Thomas, 2011)
$v\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow$ does not contain fa. $D^{\prime} \leq D$

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure"
- odd cycles
- matching vs. vertex cover
- colours

Theorem (Guenin \& Thomas, 2011)
$\searrow_{v}\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow D$ does not contain fa. $D^{\prime} \leq 1$ 「 $_{k}$
 butterfly

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure"
- odd cycles
- matching vs. vertex cover
- colours
(t) Coming

Theorem (Guenin \& Thomas, 2011)
$\searrow_{v}\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow D$ does not contain fa. $D^{\prime} \leq D 下_{k}$
 butterfly minor

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure"
- odd cycles
- matching vs. vertex cover
- colours
(H) coming

Theorem (Guenin \& Thomas, 2011)
$\searrow_{v}\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow$ does not contain fa. $D^{\prime} \leq D$ 「
can be replaced by butterfly minor
 butterfly minor

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure"
- odd cycles
- matching vs. vertex cover
- colours
ant) Cobbling
Theorem (Guenin \& Thomas, 2011)
$\searrow_{v}\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow$ does not contain fa. $D^{\prime} \leq 1$ 「
can be replaced by butterfly minor

submitted 2001
the proof user matching theory

va. $D^{\prime} \leq D \quad \perp \quad \Leftrightarrow$ does not contain
\qquad butterfly minor

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure" butterfly minor
- odd cycles odd bicycles ($+F_{7}$)
- matching vs. vertex cover cycle packing vs. feedback vertex set
- colours

Theorem (Guenin \& Thomas, 2011)
$v\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow$ does not contain fa. $D^{\prime} \leq D$

as a butterfly minor

What About Digraphs?
Ingredients: Can we have a similar picture?

- a notion of "substructure" butterfly minor
- odd cycles odd bicycles ($+F_{7}$)
- matching vs. vertex cover cycle packing vs. feedback vertex set
- colours our result

Theorem (Guenin \& Thomas, 2011)
$v\left(D^{\prime}\right)=\tau\left(D^{\prime}\right) \Leftrightarrow$ D does not contain fa. $D^{\prime} \leq D$

as a butterfly minor

Digraphs
Bipartite with Perfect Macing $: \therefore$

D

Digraphs
Bipartite with Perfect Macing $\dot{\theta}$

D

G, μ

Digraphs
Bipartite with Perfect Matching

(Digraphs
Bipartite with Perfect Matching
strongly connected \Leftrightarrow connected and every edge in a perfect matching

$D=D(G M)$
every digraph
G, μ corresponds to a pair G, M
(Digraphs
strongly connected \Leftrightarrow connected and every edge in a perfect mating
butterfly minor

- edge and vertex deletion
- contract 'special' edges:

$D=D(G M)$
every digraph G, M corresponds to a pair G, M
(Digraphs
strongly connected \Leftrightarrow connected and every edge
butte fly minor
- edge and vertex deletion
- contract 'special' edges:

$D=D(G M)$
in a perfect mating
Bipartite with Refect Matching
matching minor
- edge and K_{2} deletion
- bicontraction: contract all edges incident with degree 2-vertex

 corresponds to a pair G, M
(Digraphs
strongly connected \Leftrightarrow connected and every edge
butte fly minor
- edge and vertex deletion
- contract 'special' edges:

$D=D(G M)$
leaning out some in a details perfect matching

Bipartite with Refect Matching
$\stackrel{\text { matching minor }}{\Perp}$

- edge and K_{2} deletion
- bicontraction: contract all edges incident with degree 2-vertex

 corresponds to a pair G, M

Non -Even Digraphs
there is a set $F \subseteq E(D)$ st. $\left|F_{n} E(C)\right|$ odd
for all directed cycles C in D

Non -Even Digraphs
there is a set $F \subseteq E(D)$ st.

$$
\left|F_{n} E(c)\right| \text { odd }
$$

for all directed cycles C in D

Seymour, Thomassen
no odd bicycle butterfly minor
Fp
here F_{7} is
allowed

Non -Even Digraphs
there is a set $F \subseteq E(D)$ s.
$\left|F_{n} E(C)\right|$ odd
for all directed cycles C in D

Pfaffian Graphs
G can be oriented st. every alternating cycle has on odd number of edges in either direction

Seymour r $\xlongequal{\Longrightarrow}$ Thamasen
no odd bicycle butterfly minor

here F_{7} is

Non - Even Digraphs Pfaffian Graphs bipartite
there is a set $F \subseteq E(D)$ st. ${ }^{y} G$ can be oriented st. every
$\left|F_{n} E(C)\right|$ odd
for all directed cycles C in D
\Leftrightarrow alternating cycle has on odd number of edges in either direction

Seymour, Thamassen
no odd bicycle
butterfly minor

here F_{y} is

Non -Even Digraphs Paffion Graphs bipartite
there is a set $F \subseteq E(D)$ st. $\quad G$ can be oriented st. every $\left|F_{n} E(C)\right|$ odd for all directed cycles C in 0
\Leftrightarrow alternating cycle has on odd number of edges in
either direction

Seymour, Thymuses

$$
\stackrel{\text { LiNe }}{\stackrel{\text { Pe }}{2}}
$$

no odd bicycle butterfly minor
需
no K_{33} matching minor

Non -Even Digraphs
there is a set $F \subseteq E(D)$ at
$\left|F_{n} E(C)\right|$ odd
for all directed cycles C in 1
Seymour,$\underset{\longrightarrow}{\text { Thamasen }}$
no ode bicycle butterfly minor

Paffion Graphs bipartite
${ }^{1} G$ can be oriented st. every
\Leftrightarrow alternating cycle has on odd number of edger in either direction

$$
\begin{aligned}
& \text { Lite } \\
& \stackrel{y}{\Longrightarrow}
\end{aligned}
$$

no $K_{3,3}$ math any minor

\rightarrow matching miners allow for more freedom than butterfly minors

$$
\begin{aligned}
& \text { Impressions of a Proof } \\
& \overrightarrow{\vec{x}^{2}\left(D^{\prime}\right) \leq 2} \\
& \text { for all buthetly } \\
& \text { minors } D^{\prime} \text { of } D
\end{aligned} \Leftrightarrow D \text { is non-even } \Leftrightarrow \begin{aligned}
& \text { no odd bicycle } \\
& \text { butterfly minor }
\end{aligned}
$$

Impressions of a Proof
$\vec{x} \frac{\text { Theorem }}{}$
for all butterfly $\Leftrightarrow D$ is uon-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\quad C \Rightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

can easily be resolved

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even $\Leftrightarrow \begin{aligned} & \text { no odd bicycle } \\ & \text { butterfly minor }\end{aligned}$ minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

use matching setting

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

use matching setting

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

use matching setting

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

use matching setting

Impressions of a Proof
Theorem
$\vec{x}\left(D^{\prime}\right) \leqslant 2$
for all butterfly $\Leftrightarrow D$ is non-even \Leftrightarrow no odd bicycle minors D^{\prime} of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors
2. Step: use Corollary (Thomas, 2006)

Every strongly 2-connected non-even digraph has a vertex of (in-) out-degree 2.
results in three cases:

use matching $D\left(G^{\prime}, M\right)-x=D-u-v_{1}-v_{2}$ setting
Colouring Matchings
things appear to be 'nicer' in the matching setting

Colouring Matchings
things appear to be 'nicer' in the matching setting
$\chi(G, M)$ colour the edges of M with as few colours as possible sit. no M-alternating cycle is monochromatic

Colouring Matchings
things appear to be 'nicer' in the matching setting
$\chi(G, M)$ colour the edges of μ with as few colours as possible sit. no M-alternating cycle is monochromatic

$$
\vec{\chi}(\mathbb{D}(G, \mu))=\chi(G, \mu)
$$

Another Conjecture
Theorem (reformulated) Every bipartite math ing covered $g_{k, a p h} G$ with $X(G, \mu) \geqslant 3$ ordains

Another Conjecture
Theorem (reformulated) Every bipartite matching covered graph G with $X(G, \mu) \geqslant 3$ contains $k_{3,3}$ as a matching minor.
Conjecture Every bipartite matching covered graph G with $\chi(G, M) \geqslant k$ contains $K_{k, k}$ as a matching minor.

Another Conjecture
Theorem (reformulated) Every bipartite matching covered graph G with $\chi(G, \mu) \geqslant 3$ contains $k_{3,3}$ as a matching minor.

Conjecture Every bipartite matching covered graph G with $X(G, M) \geqslant k$ contains $K_{k, k}$ as a matching minor.
some evidence
Lemma There exitsts a function f st. every matching covered graph G with $X(G, M) \geqslant f(k)$ contains $K_{k, k}$ as a matching minor.

Another Conjecture
Theorem (reformulated) Every bipartite matching covered graph G with $X(G, \mu) \geqslant 3$ curtains $k_{3,3}$ as a matching minor.

Conjecture Every bipartite matching covered graph G with $X(G, M) \geq k$ contains $K_{k, k}$ as a matching minor.
same evidence
Lemma There exitsts a function f sit. every matching covered graph G with $X(G, \mu) \geqslant f(k)$ contains $K_{k, k}$ as a matching minor.

Another Conjecture
Theorem (reformulated) Every bipartite matching covered graph G with $X(G, \mu) \geqslant 3$ contains $k_{3,3}$ as a matching minor.

Conjecture Every bipartite matching covered graph G with $X(G, M) \geqslant k$ contains $k_{k, k}$ as a matching minor.
some evidence
Lemma There exitsts a function f sit. every matching covered graph G with $X(G, M) \geqslant f(k)$ contains $K_{k, k}$ as a matching minor.
Thank You

