Colouring Non-Even Digraphis Raphael Steiner joint work with Marcelo Garlet Millani and Sebustion Wiederrecht





Graph Colouring G grayoh, C:V(G) -> {1,...,k} proper colouring  $c(x) \neq c(y)$  for all  $xy \in E(G)$ Theorem Every planor graph is 4-colourable. · took almost 250 years first computer assisted proof

Graph Colouring G graph, C:V(G) -> {1,...,k} proper colouring  $c(x) \neq c(y)$  for all  $xy \in E(G)$ Theorem Every planor graph is 4-colourable. took almost 250 years first computer assisted proof



















The Dichromatic Number

Introduced by Neumann-Lara in 1982

Goal: Generalise proper colourings for undirected graphs to digraphs in a meaningful way

The Dichromatic Number

Introduced by Neumann-Lara in 1982

Goal: Generalise proper colourings for undirected graphs to digraphs in a meaningful way



undirected : adjocent vertices must have different colours X(G)

The Dichromatic Number

Introduced by Neumann-Lara in 1982

Goal: Generalise proper colourings for undirected graphs to digraphs in a meaningful way



undirected: adjocent vertices must have different colours X(G)



directed : No monochromatic directed cycles Ź(D)

A Conjecture

The Colour Carjecture (Erdős, Neumann-Lara, Shrekarski) Every orientation D of a planar graph is 2-colourable.

A Conjecture

Two Colour Conjecture (Erdős, Neumann - Lara, Skrekovski) Every orientation D of a planar graph is 12-colourable. replace every edge xy by (x,y) or (y,x), but never

A Conjecture

Two Colour Conjecture (Erdős, Neumann-Lara, Skrekovski) Every orientation D of a planar graph is 1 2-colourable. replace every edge xy by (x,y) or (y,x), but never both

We will talk about bicolourings today.

A Negative Result

D digraph CD:= (V(0), {V(c) | C = D dir.}) 1 cycle hypergraph of D

A Negative Result

similarities between digraph colourings and hypergraph colourings  $\chi(z_D) = \overline{\chi}(D)$ 

D digraph CD:=(V(D), {V(C)} | C = D dir.}) Cycle hypergraph of D

A Negative Result  
similarities between digraph colourings  
and hypergraph colourings  

$$\mathcal{K}(\mathcal{E}_D) = \mathcal{R}(D)$$
  
hypergraph 2-colouring is hard  
(maybe?  
testing whether  $\mathcal{R}(D) \leq 2$  is a special case

A Negative Result  
similarities between digraph colourings  
and hypergraph colourings  

$$\mathcal{K}(\mathcal{E}_{D}) = \mathcal{R}(\mathcal{D})$$
  
hypergraph 2-colouring is hard  
(maybe?  
testing whether  $\mathcal{R}(\mathcal{D}) \leq 2$  is a special case MP-complete  
(Feder, Hell, Mohar 2003)

A Negative Result  
Similarities between digraph colourings  
and hypergraph colourings  

$$\mathcal{K}(\mathcal{E}_D) = \mathcal{R}(\mathcal{D})$$
  
hypergraph 2-colouring is hard  
(maybe?  
testing whether  $\mathcal{R}(\mathcal{D}) \leq 2$  is a special case MP-complete  
(Feder, Hell, Mohor 2003)  
can we do anything?  
FPT?

A Negative Result  
similarities between digraph colourings  
and hypergraph colourings  

$$\mathcal{K}(\mathcal{C}_D) = \mathcal{R}(D)$$
  
hypergraph 2-colouring is hard  
(maybe?  
testing whether  $\mathcal{R}(D) \leq 2$  is a special case M-complete  
(Teder, Hell, Mohor 2003)  
can we do anything?  
 $\mathcal{R}(D) \leq 3$ 

A Negative Result  
similarities between digraph colourings  
and hypergraph colourings  

$$\mathcal{K}(\mathcal{C}_D) = \mathcal{R}(D)$$
  
hypergraph 2-colouring is hard  
 $(maybe ?$   
testing whether  $\mathcal{R}(D) \leq 2$  is a special case MP-complete  
directed feedback verter number  
 $\operatorname{can} we do complete$   
 $\operatorname{can} we do complete$   
 $\operatorname{Feder}, Hell, Mohor 2003)$   
 $\operatorname{can} we do complete$   
 $\operatorname{FPT}^2$   
 $\operatorname{FPT}^2$   
 $\operatorname{FPT}^2$   
 $\operatorname{FPT}^2$ 

A Negative Result  
similarities between digraph colourings  
and hypergraph colourings  

$$(C_D) = \mathcal{R}(D)$$
  
hypergraph 2-colouring is hard  
(maybe?  
testing whether  $\mathcal{R}(D) \leq 2$  is a special case MP-complete  
(Teder, Hell, Mohor 2003)  
directed feedback verter number  
 $even if T(D) \leq 6$   
 $directed feedback verter number
 $(D) \leq 3$  => hard even on digraphs of bounded  
 $\int out - degeneracy of D$$ 

Bicolouring ... Things

Graphs no odd cycles (Dipartite)

Bicolouring ... Things

Graphs no odd cycles (Dipartite) (=)  $\chi(G) \leq 2$ (=)  $\mathcal{V}(G') = \mathcal{T}(G')$ f.a. G's G

Bicolouring ... Things

Graphs no odd cycles (Dipartite) (=)  $\chi(G) \leq 2$ (=) vertex cover (=) uum ber  $v(G') = \tau(G')$ f.a. G's G matching number

. •

Bicolouring ... Things Graphs Hypergraphs\_ no odd cycles (Dipartite) no odel strong cycles (balanced) (=) **<=>**  $\chi(G) \leq 2$ X(H')≤2 f.a. H'⊆ H← (=) (=)  $v(H') = \tau(H')$  $v(G') = \tau(G')$ f.a. G's G f.a. H' S H < delete and "shrink" edges nicely structured classes implying polynomial time algorithms

What About Diaraphs? Can me have a similar picture? Ingrectionts: • a notion of "substructure"

- odd cycles
- · montching vs. vertex cover
- · colours

What About Diagaphs? Can me have a similar picture? Ingraclients: • a notion of "substructure"

- odd cycles
- · montching vs. vertex cover
- · colours

Theorem (Guenin & Thomas, 2011)  $\upsilon(D') = \tau(D') \langle = \rangle D$  does not contain f.a.  $D' \leq D$ · butterfly min-NO NOT

What About Diaraphs? Can me have a similar picture? Ingrachients: • a notion of "substructure" • odd cycles · matching vs. vertex cover · colours Theorem (Guenin & Thomas, 2011)  $\mathcal{V}(D') = \mathcal{T}(D') \langle = \rangle$  D does not contain f.a.  $D' \leq D$   $\int$   $\langle = \rangle$  D does not contain f.a.  $D' \leq D$   $\int$   $\langle = \rangle$  D  $\langle = \rangle$  D  $\langle = \rangle$   $\langle$ 

What About Diaraphs? Can me have a similar picture? Ingrectionts: • a notion of "substructure" • odd cycles · matching vs. vertex cover · colours Theorem (Guenin & Thomas, 2011)  $v(D') = \tau(D') \langle = \rangle D$  does not contain f.a.  $D' \leq D \int_{k} \langle = \rangle \mathcal{P}(T)$ odd bicycles Sir. feedberch NOL

What About Diaraphs? Course have a similar picture? Ingrectionts: • a notion of "substructure" • odd cycles · matching vs. vertex cover · colours sujent pour Theorem (Guenin & Thomas, 2011) odd bicycles can be replaced by butter fly minor

What About Diaraphs? Couvre have a similar picture? Ingrectionts: • a notion of "substructure" • odd cycles · matching vs. vertex cover · colours scubmitted 2001 the proof uses matching theory (vertex disjonth) polishing Theorem (Guenin & Thomas, 2011) (vertex disjonth) polishing Theorem (Guenin & Thomas, 2011) (vertex disjonth) polishing (Guenin & Thomas, 2011) (vertex disjonth) (D') =  $\tau(D')$  (=> D does not contain  $F_{z}$ (a)  $f_{z}$  (D') =  $\tau(D')$  (=> D does not contain  $F_{z}$ (a)  $f_{z}$  (D') =  $\tau(D')$  (=> D does not contain  $F_{z}$ (a)  $f_{z}$  (D') =  $\tau(D')$  (=> D does not contain  $F_{z}$ (a)  $f_{z}$  (D') =  $\tau(D')$  (=> D does not contain  $F_{z}$ (a)  $f_{z}$  (D') =  $\tau(D')$  (=> D does not contain  $F_{z}$  (D) does not contain  $F_{z}$  (D)

Mhat About Digraphs? Ingredients: Cour ne have a similar picture? • a notion of "substructure" butterfly minor • odd cycles odd bicycles (+ Fz) • matching vs. vertex cover cycle packing vs. feedback vertex set · colours Theorem (Guenin & Thomas, 2011)  $v(D') = \tau(D')$   $\langle = \rangle$  D does not contain f.a.  $D' \leq D$   $\langle = \rangle$  D does not contain nor odd bicycles nor winer

Mhat About Digraphs? Ingredients: Cour ne have a similar picture? • a notion of "substructure" butterfly minor • odd cycles odd bicycles (+ Fz) • matching vs. vertex cover cycle packing vs. feedback vertex set · colours our result Theorem (Guenin & Thomas, 2011)  $v(D') = \tau(D')$   $\langle = \rangle$  D does not contain f.a.  $D' \leq D$ int does not contain<math>int does not contain<math>int does not contain<math>int does not containnor odd bicycles nor minor



Bipartite with Refect Matching





Bipartite with Refect Matching





Bipartite with Refect Matching



()igraphs strongly connected

Bipartite with Refect Matching connected and every edge in a perfect matching



(=)

(Digraphs Bipartite with Refect Matching connected and every edge in a perfect matching strongly connected (=) • edge and verter deletion • contract 'special' edges : - > or co  $\mathcal{D} = \mathcal{D}(\mathcal{G}, \mathcal{M})$ G, *M* every digraph corresponds to a pair G,M





Non-Even Digraphs

there is a set  $F \subseteq E(D)$  s.t.  $|F_n E(C)|$  odd for all directed cycles C in D



Non-Even Digraphs

there is a set  $F \subseteq F(D)$  s.t. |Fn E(C)| odd for all directed cycles C in D

Seymour, Thomassen

no odd bicycle butterfly minor

here Fz is allowed

Non-Even Digraphs

there is a set  $F \subseteq E(D)$  s.t.  $|F_n E(C)|$  odd for all directed cycles C in D

Pfaffian Graphs

G can be oriented s.t. every alternating cycle has an odd number of edges in either direction

Seymour, Thomassen

no odd bicycle butterfly minor

here Fz is allowed

Non-Even Digraphs

Pfaffion Graphs

there is a set  $F \subseteq E(D)$  s.t.  $|F_n E(C)|$  odd for all directed cycles C in D

Diportite G can be oriented s.t. every alternating cycle has an odd number of edges in either direction

Seymour, Thomassen

no odd bicycle butterfly minor

here Fz is allowed

Non-Even Digraphs

Pfaffian Graphs

Diportite

there is a set  $F \subseteq E(D)$  s.t.  $|F_n E(C)|$  odd for all directed cycles C in D

Seymour, Thomassen

no odd bicycle butterfly minor 

G can be oriented s.t. every alternating cycle has an odd number of edges in either direction Little  $\langle = \rangle$ 



Non-Even Digraphs



there is a set  $F \subseteq E(D)$  s.t.  $|F_n E(C)|$  odd for all directed cycles C in D

Seymour, Thomassen

no odd bicycle butterfly minor S. C. S. C. ....

bipartite G can be oriented s.t. every alternating cycle has an odd number of edges in either direction

Little (=> no K33 workdring minor Matching minors allow for more freedom than butterfy minors

Impressions of a Proof r(U) = ( for all butterfly (=) D is non-even (=) butterfly minor minors D' of D

Impressions of a Proof  
Theorem  

$$\overline{Z}(D') \leq 2$$
  
for all butterfly (=> D is non-even (=) butterfly minor  
minors D' of D

1. Step: reduce the problem to certain strongly 2-connected butterfly minors

Impressions of a Proof  
Theorem  

$$\overline{\mathcal{X}(D')} \leq 2$$
  
for all butterfly (=> D is non-even (=) butterfly minor  
minors D' of D  
1. Step: reduce the problem to certain strongly 2-connected  
butterfly minors  
2. Step: use (orollary (Thomas, 2006)  
trery strongly 2-connected non-even digraph  
has a vertex of (in-) out-degree 2.  
results in three cases:  
 $\overline{\mathcal{X}_{u}}$ 

Impressions of a Proof  
Theorem  

$$\overline{\mathcal{U}(D') \neq 2}$$
  
for all butterfly (=> D is non-even (=) butterfly minor  
 $\overline{\mathcal{U}(D') \neq 2}$   
for all butterfly (=> D is non-even (=) butterfly minor  
 $\overline{\mathcal{U}(D') \neq 2}$   
1. Step : reduce the problem to certain strongly 2-connected  
butterfly minors  
2. Step : use Corollary (Thomas, 2006)  
Every strongly 2-connected non-even digraph  
has a vertex of (in-) out-degree 2.  
results in three cases:  
 $\overline{\mathcal{U}(D')}$   
 $\overline{\mathcal{U}(D'$ 

•••

Impressions of a Proof  
Theorem  

$$\widehat{Z}(D') \leq 2$$
  
for all butterfly (=> D is non-even (=) butlerfly minor  
minors D' of D  
1. Step: reduce the problem to certain strongly 2-connected  
butterfly minors  
2. Step: use Corollary (Thomas, 2006)  
Every strongly 2-connected non-even digraph  
has a vertex of (in-) out-degree 2.  
results in three cases:  
 $V_1 \otimes V_2 = V_1 \otimes V_2$   
 $V_2 \otimes V_2 = V_1 \otimes V_2$   
 $V_1 \otimes V_2 = V_1 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2$   
 $V_1 \otimes V_2 \otimes V_2$   
 $V_2 \otimes V_2$   
 $V_1 \otimes V_2$   
 $V_2 \otimes V_2$   
 $V_1 \otimes V_2$   
 $V_2 \otimes V_2$   
 $V_2 \otimes V_2$   
 $V_2 \otimes V_2$   
 $V_1 \otimes V_2$   
 $V_2 \otimes V_2$   

Impressions of a Proof  
Theorem  

$$\overline{Z}(D') \leq 2$$
  
for all buttofly (=> D is non-even (=) butlefly minor  
minors D' of D  
1. Step: reduce the problem to certain strongly 2-connected  
butterfly minors  
2. Step: use (orollary (Thomas, 2006)  
Every strongly 2-connected non-even digraph  
has a vertex of (in-) out-degree 2.  
results in three cases:  
 $V_1 = V_2 = V_1$   
where matching  
con easily be resolved use matching  
setting

Impressions of a Proof  
Theorem  

$$\widehat{Z}(D') \leq 2$$
  
for all butterfly (=> D is non-even (=) butterfly minor  
minors D' of D  
1. Step: reduce the problem to certain strongly 2-connected  
butterfly minors  
2. Step: use (orollary (Thomas, 2006)  
Every strongly 2-connected non-even digraph  
has a vertex of (in-) out-degree 2.  
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_3 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases:  
 $V_2 \otimes V_2$   
results in three cases:  
 $V_1 \otimes V_2$   
results in three cases in



Colouring Matchings

things appear to be 'nicer' in the matching setting

Colouring Matchings

things appear to be 'nicer' in the matching setting  $\frac{\chi(G,M)}{feur colours on possible s.t. no}$  M-alternating cycle is monochromatic





Colouring Matchings

things appear to be 'nicer' in the matching setting  $\frac{\chi(G,M)}{feur colours on possible s.t. no}$  M-alternating cycle is monochromatic

 $\overline{\chi}(\mathcal{D}(G,\mathcal{M})) = \chi(G,\mathcal{M})$ 





Another Conjecture



Another Conjecture

Carjecture Every Dipartite matching covered  
graph G with 
$$K(G,M) \ge k$$
 contains  
 $K_{k,k}$  as a matching minor.



some evidence

<u>Lemma</u> There exitsts a function f s.t. every matching covered graph G with  $X(G,M) \ge f(k)$ contains  $K_{kk}$  as a matching minor.

Another Conjecture  
Theorem (reformulated) Every sipartile matching covered  
graph G with 
$$\chi(G,M) \ge 3$$
 contains  
Kg3 as a matching minor.  
Conjecture Every sipartile matching covered  
graph G with  $\chi(G,M) \ge k$  contains  
Kg4 as a matching minor.  
Some aidence  
Lemma There exitsts a function f st. every  
matching covered graph G with  $\chi(G,M) \ge f(k)$   
contains Kkk as a matching minor.

Another Conjecture Theorem (reformulated) Every dipartite matching covered graph G nith X(GM) = 3 contains K33 as a matching minor. Conjecture Every dipartite matching covered graph G with  $\mathcal{K}(G, M) \ge k$  contains  $K_{k,k}$  as a matching minor. roughly 4<sup>k<sup>2</sup></sup> some endence <u>Lemma</u> There exitsts a function of s.t. every matching covered graph G with  $\chi(G,M) \ge f(k)$ contains  $K_{kk}$  as a matching minor. Thank You