Cyclevictth and the Grid Theorem for Perfect Matching Wictth of Bipartike Graphs

$$
\text { WG } 2019
$$

Merie Hatel Reman Rabiwacich Sebastion Widerrent'

The Gid Theorem

Goal: Decompose G
into a tree-like structure

The Grid Theorem

Goal: Decompose G into a tree-like structure

The Gid Theorem

Maximum Matting Width

Goal: Decompose G into a tree-like stature

The Gid Theorem

Maximum Matting Width

Goal: Decompose G into a tree-like structure

The Grid Theorem

within a constant factor
closed under minors
Maximum Matching Width
 \longleftarrow
closed under minors

The Gid Theorem
Tremidth
 within a constant factor

closed under minors
"maximum math ting
"well behaved" under minors

Theorem (Robertson \& Seymour)
Either G has small treewictly or a large grid minor.

The Directed Gid Theorem Directed Treeniclth

The Directed Grid Theorem

Directed Treenicth

"well behaved" under butterfly minors

a directed minor notion where only "special" edges are allowed to be contracted

The Directed Grid Theorem
Directed Treemilth

"well behaved" under butterfly minors

Theorem (Kawarabayashi \& Kreutzer)
Either D has small directed treenidth, or a large cylindrical gid as a butterfly nimor.

The Directed Gid Theorem

Will be filled later.
(C) \square
"well behaved" under butterfly minors

Theorem (Kawarabayashi \& Kreutzer)
Either D has small directed teemictth or a large cylindrical gid as a butterfly minor.

The Matcling Grid Coyjectore

G matsing corered \leadsto connected and erey elye belangs to a perfect uanteling

The Matching Grid Conjecture
Perfect Matching Width
G matching covered \leadsto connected and every edge belongs to a perfect matching

The Matching Grid Conjecture
Perfect Matching Width

G matching covered

Conjecture (Norine)
"well belong" under matching minors
A matching covered graph either has small perfect matching width or contains a matching gid as a matching minor.

Directed Graphs \& Bipartite Matting Covered Graphs

$4 / 10$

Directed Graphs \& Bipartite Matting Covered Graphs

$4 / 10$

Directed Graphs \& Bipartite Matting Covered Graphs

replace every vertex by an edge and sort its incident edges by outand ingoing

Directed Graphs \& Bipartite Matting Covered Graphs
$D(G, M)$

G
yields a bipartite
graph G with a
marked perfect
matching M

replace every vertex by an edge and sort its incident edges by outand ingoing

Directed Graphs \& Bipartite Matting Govered Graphs

$\xrightarrow[\text { wodes in boft direcious }]{\longrightarrow}$ G

consider a p.m. M' diffeent from μ

Directed Graphs \& Bipartite Matsing Govered Graphs

μ^{\prime} yiects a facily of $\sim \sim \begin{gathered}\text { cousider a p.m. } M^{\prime} \text { different } \\ \text { fram } \mu\end{gathered}$ pain ice wotex digjoint directed occles
notus in both diredions G

Directed Graphs \& Bipartite Matting Covered Graphs

notes in bort directions
G

Lemma (μ_{c} Craig)
$D(G, \mu)$ has $D\left(G^{\prime}, \mu^{\prime}\right)$ as a butterfly minor

$$
\Leftrightarrow
$$

G has G^{\prime} as a matching math ing miner "that respects $M^{\prime \prime}$

Plan

1) Link perfect matching width of bipartite matching covered graphs to directed treenillth.
2) Use the Directed Grid Theorem to settle Norines Conjecture for the bipartite case.

M-Perfect Matching Width

optimal perfect matching decomposition for G

M-Perfect Matching Width

optimal perfect matching decomposition for G

Every digraph corresponds to a pair:
G a bipartite graph
M a perfect matching of G

M-Perfect Matching Width

optimal perfect matching decomposition for G

Every digraph corresponds to a pair:
G a bipartite graph
M a perfect matching of G

Problem: M might be "scattered" across an optimal decomposition

M-Perfect Matching Width

Every digraph corresponds to a pair:

G a bipartite graph
M a perfect matching of G

optimal perfect matting decomposition for G

optimal M-decomposition for G

Problem: M might be "scattered" across an optimal decomposition
Solution: Only consider decompositions that respect $M \Rightarrow M$-pu

M-Perfect Matching Width

Theorem

$$
\operatorname{panw}(G) \leq M-\operatorname{pmw}(G) \leq 2 \operatorname{pmow}(G)
$$

Towards Digraphs

Towards Digraphs

\Rightarrow consider collections of vertex disjoint directed cycles

Cyclewidth

- cubic tree
- vertices of (1) mapped to Leaves

Cyclewidth

- cubic tree
- vertices of 1 mapped to Leaves
- width is measured via the number of edges vertex disjoint cycle families have in the cats

Cyclewidth
Lemma

- cubic tree
- vertices of (1) mapped to leaves
- width is measured via the number of edges vertex disjoint cycle families have in the cats

Cylindrical grid has large cyclewidth
Lemma

$$
\operatorname{cyw}(D) \leqslant 2 d t w(D)
$$

Cyclewidth

- cubic tree
- vertices of (1) mopped to leaves
- width is measured via the number of edges vertex disjoint cycle families have in the cats

Lemma
Cylindrical grid has large cyclewidth
Lemma

$$
\operatorname{cyw}(D) \leq 2 \text { dAw }(D)
$$

Theorem
A class of digraples has bounded cyclewidth iff it has bounded directed treewidth.

Deducing a Grid Theorem
Lemma
Cycewicth is closed under butterfly minors

II Grid Theorem for
Grid Theorem for cyclewidth

Deducing a Grid Theorem

Lemma
Cyclewicth is closed under butterfly minors

II Grid Theorem for
Grid Theorem for cyclewidth

Lemma

$$
\operatorname{cyw}(D(G, M))=M-\operatorname{panw}(G)
$$

シ
$\operatorname{pan}(G) \leqslant \operatorname{cyw}(G(G, \mu)) \leqslant 2 \operatorname{pmw}(G)$

Deducing a Grid Theorem

Lemma
Cyclewicth is closed under butterfly minors

II, Grid Theorem for
\checkmark directed treewidth
Grid Theorem for cyclewidth

Lemma

$$
\operatorname{cyw}(D(G, M))=M \text {-ami }(G)
$$

\Downarrow
$\operatorname{pani}(G) \leq \operatorname{cqu}(D(G, \mu)) \leq 2 \operatorname{pan}(G)$
$+M_{c}$ Chains Lemma
on butterfly and matching minors

Grid Theorem for bipartite perfect matching width

Remorks on Cyclewidth

Directed Treenicth

"well behaved" under butterfly mivors

Cyclewidth

closed under buttefly minss

Remarks on Cyclewidth

Directed Treenidth

"well behaved" under butterfly minors one direction in the cyw-dtw relation uses the Gid Theorem

Cyclewidth

closed under butterfly minos
$\xrightarrow{\sim}$ huge function/we know:
a linear bound exists

Remarks on Cyclewidth

Directed Treenidth

"well behaved" under butterfly minors one direction in the cow-dtw relation uses the Grid Theorem huge function/we know: a linear bound exists
cyw is better behaved than dAw
Task: Characterise classes of small cow by forbidden minors

Remarks on Cyclewidth

Directed Treenidth

"well behaved" under butterfly minors one direction in the cow-dtw relation uses
the Grid Theorem huge function/we know:
a linear bound exists
cyw is better behaved than dAw
Task: Characterise classes of small cow by forbidden minors
Thank You

